
Journal of Applied Mechanics and Technical Physics, Vol. 46, No. 3, pp. 339–345, 2005

TANGENTIAL DISCONTINUITIES OF PARAMETERS

OF A POLAR FLUID UNDER SHEAR STRAIN

UDC 532.135S. V. Stebnovskii

Possible formation of tangential discontinuities of parameters of a deformable polar fluid is examined
by the example of glycerin. It is experimentally established that glycerin under weak shear loads
possesses the properties of a non-Newtonian elastoviscoplastic fluid, and formation of tangential
discontinuities in viscosity is possible. In the discontinuity region, glycerin has the properties of
a low-viscosity fluid, and the structure of the medium is reconstructed after unloading. A rheological
equation of the examined fluid is derived, which allows one to analyze the behavior of the medium
in different modes of its deformation, including the formation of a local region with reduced viscosity
and a tensile stress field.
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It is known that ductile failure of condensed media is characterized by some basic mechanisms, such as
the development of cavitation cavities in the field of tensile stresses (bubbles in liquids or voids in solids) and
macroscale plastic flow under the action of shear stress [1, 2]. In this connection, in addition to the rheological
model of cavitation development in condensed media (valid for both liquid and solid-plastic media) [3], it seems
important to construct a generic model of plastic deformation of these media with a transition to the viscous flow
mode.

There are many publications dealing with plastic deformation of solids (see, e.g., [2, 4]) and liquid-type media
(strong emulsions and suspensions, bitumens, paints, gels, polymer melts, etc.) [5–8]. It is commonly accepted that
the so-called Newtonian fluids do not possess shear strength, and their viscosity is independent of flow velocity.
Investigations of fluid media under the action of ultra-weak shear loading, however, show that these media also
possess a certain shear strength. Thus, the experiments of [9] made it possible to estimate the static shear modulus
of water (about 10−6 Pa). It was demonstrated in [10, 11] with the use of an optical technique that quiescent polar
fluids (water, acetone, ethyl alcohol, glycerin, etc.) have an ordered structure destroyed by weak shear strains.
(Water in the liquid state has the maximum shear strength at T = +8◦C.) Thus, the polar fluids mentioned (at
least low-viscosity water with the shear-strength limit τ∗ ≈ 2 ·10−2 Pa at T = +8◦C [11] and high-viscosity glycerin
with τ∗ = 1 Pa at T = +20◦C [9]) have an ordered structure under shear loads below the threshold values, and
the structure is destroyed by loads above the strength threshold, i.e., the rheological parameters become different.
Hence, it seems important to study possible formation of tangential discontinuities of medium parameters in fluids,
which can trigger fragmentation of the loaded specimen.

1. Experimental Study of Formation of Tangential Discontinuities of Rheological Parameters
of a Polar Fluid (Glycerin). 1.1. For the present investigations, glycerin was chosen as a model high-viscosity
polar fluid. Viscoelastic properties of glycerin were determined in an experiment aimed at observing the Weisenberg
effect [6] (Fig. 1): viscoelastic fluid 1 capability of uprising on a vertical rod 2 rotating in the fluid medium. This
ascent is caused by the fact that viscoelastic fluids possess stresses normal to the shear plane, directed toward the
axis of revolution, and increasing the pressure in the vicinity of the rod.
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Fig. 1. Weisenberg effect in glycerin.

The experiments revealed that glycerin possesses viscoelastic properties: noticeable uprising of the fluid
along the rod surface was observed at a temperature below +21◦C and velocity of revolution of the rod equal to
0.5–2.0 rounds per second (the rod diameter was 1.5 cm). (With a further increase in angular velocity of the rod,
the uprising distance decreased, which is apparently associated with failure of the ordered structure of glycerin
owing to shear-strain-rate growth.)

1.2. Tangential discontinuities of parameters of a condensed medium can be divided into two types. The
first-stage tangential discontinuity (TD1) implies formation of a zone extended in the direction of shear strain,
where the following condition is satisfied: µz � µ. Here µ and µz are the values of structural viscosity of the
medium (whose definition is given in [6]) outside and inside the zone, respectively; the density of the medium inside
and outside the TD1 zone is almost identical. The second-stage tangential discontinuity (TD2) involves formation
of a zone extended in the direction of the shear strain, where the conditions ρz/ρ0 → 0 and µz/µ → 0 are satisfied
(ρz and ρ0 are the densities in the TD2 zone and in the undisturbed medium, respectively).

Let us consider conditions necessary for TD1 and TD2 formation. As the structural viscosity of condensed
media decreases with increasing shear-strain rate ε̇τ [12, 13], for the TD1 to form, the medium should be subjected
to shear strain with a gradient of shear velocity in the direction perpendicular to shear. The value of ε̇τ should have
a maximum localized in the TD1 zone such that ε̇τ max > ε̇∗τ (ε̇∗τ is the threshold value of the strain rate at which
the decrease in structural viscosity reaches the value µ0 corresponding to viscosity of the Newtonian flow of the
medium). For a wide range of liquid-type media, the dependence of the structural viscosity µ on the strain rate is
adequately described by the formula [14] µ(sλ′) = µ0 + (µmax − µ0)arsinh

√
sλ′/

√
sλ′, where s = 2 tr (D2), D is the

strain-rate tensor, tr (D2) is the trace of the tensor D2, and λ′ is the time constant of the deformation process. In
addition, the dependence of µ on the shear stress τ is determined by the expression [12] µ = µ0+(µmax−µ0)τ̄ / sinh τ̄ ,
where τ̄ = τ/τ∗. (The relation between the shear stress τ and ετ is determined from the rheological equation for a
particular medium.)

Under shear strain of solid-plastic materials, µ also decreases with increasing ε̇τ . Thus, in the case of steel
and aluminum [13], the decreasing viscosity of materials reaches almost a minimum value at ε̇τ > 104 sec−1. This
effect can be explained as follows: at ε̇τ exceeding a certain threshold value ε̇∗τ , metal crystals pass to the atom-
vacancy state [2], and their plastic deformation passes to the Newtonian fluid flow mode. A similar effect is known
to be observed in shaped-charge jets.

As the density of the medium by definition should vanish in the zone of the discontinuity for the TD2 to form,
i.e., the total volume of the medium should increase, it is obvious that deformation should be three-dimensional:
it should involve shear deformation of the medium and extension in the direction perpendicular to shear. Real
condensed media always contain microcavities (microvoids in solid-plastic materials and microbubbles in liquids);
hence, cavitation is developed in the field of tensile stresses under certain conditions [3]: growth of voids, their
coalescence, and TD2 formation. Because of the three-dimensional character, however, this discontinuity cannot be
regarded as purely tangential, and it is not considered in the present work.
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Fig. 2. Schematic of the experiment on studying tangential discontinuities in glycerin parameters.

Fig. 3. Visualization of the tangential discontinuity in dielectric permeability of the fluid.

1.3. Formation of the first-stage tangential discontinuities was considered on an experimental setup shown
schematically in Figs. 2a and 3. The setup operates on the following principle. The space between two counter-
rotating coaxial cylinders 1 and 2 is filled by a fluid medium 3. Electromechanical units 4 and 5 set the cylinders into
motion in the opposite directions with linear velocities that could be adjusted from 0.002 to 25 cm/sec. Counter-
rotation of the cylinders results in formation of coaxial counter-current flows in the examined medium with a
transitional layer in between, in which certain velocities of the flows can ensure the existence of shear modes of
deformation, providing failure of the ordered structure of the medium. The main geometric parameters of the
setup (see Fig. 2a) are R1 = 7.4 cm, R2 = 4 cm, R3 = 9 cm, h1 = 1.5 cm, h2 = 1 cm, and H = 2 cm. The
glycerin temperature was +19◦C. To register the process, the system of coaxial cylinders was placed into a parallel
light beam I formed by the optical system (light source 6 and condenser 7); after condenser 8, the light beam was
incident onto the video camera 9 registering the examined process (Fig. 3). The “field of vision” of the optical
system covered the sector F (Figs. 2b and 3).

Cylinders 1 and 2 (Figs. 2a and 3) rotating in the opposite directions form two coaxial counter-current
flows in the medium 3 (Fig. 2b); a typical diagram of velocities in the vicinity of the interface is shown in Fig. 2c.
In this diagram, u(r) is the velocity distribution in the fluid along the r coordinate and B is the point located
in the transitional layer between the counter-current flows. To determine the velocity diagram, polymer spheres
0.04–0.06 cm in diameter were introduced into the medium in some experiments; the densities of the spheres and
the medium were identical. The “frozen” spheres moved together with the glycerin flows, and the distribution of
flow velocity in the r direction was determined on the basis of the velocity of these spheres. Figure 2c shows the
qualitative dependence of the flow-velocity gradient Gr = du/dr, and hence, the shear strain rate ε̇τ , on the radius r.
Obviously, at the point B corresponding to the transitional layer between the opposing flows, the dependence Gr(r)
has a “sharp” maximum Gr(r = AB) = max {Gr(r)}; therefore, the transitional layer has the greatest probability
of failure of the ordered structure of the medium and, under certain conditions, violation of continuity of the medium
as well.
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Fig. 4. Video frames of formation of tangential discontinuities in shear viscosity in glycerin.

1.4. The experiments performed revealed the following information. Glycerin is an optically isotropic liquid
medium in the initial state (Fig. 4a), which loses optical homogeneity, i.e., homogeneity of dielectric permeability,
in the case of formation of opposing coaxial flows in the transitional layer already at low values of ε̇τ (Fig. 4b).
This means that a thin cylindrical layer with a broken structure is formed in the medium [10]; the viscosity and,
hence, the relaxation time of shear stresses in this layer have lower values than those in the ambient medium. Such
a layer has some features of the TD1, but the time needed for the glycerin-structure breakdown in the transitional
layer tb strongly depends on the level of ε̇τ∗ = ε̇τ (r = AB). Thus, tb = 5 min for ε̇τ∗ = 0.008 sec−1, tb = 63 sec
for ε̇τ∗ = 0.052 sec−1, tb = 48 sec for ε̇τ∗ = 0.095 sec−1, and tb = 10 sec for ε̇τ∗ = 0.2 sec−1. When the cylinders
are stopped, rotation of the coaxial opposing flows is terminated, and the glycerin structure in the transitional
layer is reconstructed. In all cases, the time of visible “healing” of the glycerin structure is about 15 min (at a
temperature of +19◦C). It should be noted that the width of the transitional layer with the broken structure remains
almost constant during rotation of the cylinders in the examined range of ε̇τ∗, i.e., a stable zone of the tangential
discontinuity of the ordered structure of glycerin is formed. As ε̇τ∗ increases to 2–3 sec−1, the discontinuity zone
(layer with the broken structure) is substantially expanded (Fig. 4c); judging by the flow character, glycerin viscosity
in this layer is rather low: the video filming reveals a rapid transition from the laminar to the turbulent flow and
vice versa (when the cylinder-rotation velocity decreases). Thus, we can assume that the regime of the Newtonian
(viscous) flow is established in the zone of the tangential discontinuity with ε̇τ∗ increasing to 2 sec−1 because of
the breakdown of the ordered structure and a decrease in structural viscosity of glycerin. When the cylinders are
stopped, the structure of the medium is reconstructed; the reconstruction has a cellular character at the initial stage
(Fig. 4d), but the entire broken ring zone TD1 acquires a uniform structure with time.

Thus, according to the experimental results obtained, the viscous polar fluid (glycerin) at rest possesses
shear elasticity, but the orderliness of the medium structure is violated with increasing ε̇τ ; hence, the structural
viscosity decreases to a level of the Newtonian shear viscosity; for this reason, glycerin behaves as a low-viscosity
fluid (flow turbulization). This process has a reversible character: the ordered structure of glycerin is recovered as
ε̇τ → 0. Localization of the region of existence of high values of ε̇τ leads to formation of a tangential discontinuity
in viscosity of the medium.

2. Rheological Model of Macroscale Shear Deformation of a Polar Fluid. 2.1. It follows from
the above-described experimental results that a polar fluid (glycerin) in the region of weak shear loads behaves
as an elastoviscous medium with possible formation of zones with a discontinuous viscosity coefficient. Let us
consider the possibility of constructing a macrorheological model of shear deformation of the examined medium. As
glycerin and water possess shear strength [9–11], they can pass from the elastic to the viscous state only through
the stage of plastic deformation. Indeed, if these media had no shear strength, their mechanical model would have
the form shown in Fig. 5a, where the element µ0 corresponding to viscous flow is always open, and the medium flow
begins at an arbitrary level of shear stress. Possessing shear strength means that, for stresses below the threshold
value, the fluid element µ0 in the mechanical model is blocked by the St. Venant element η∗ (Fig. 5b), and the
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Fig. 5. Mechanical analog of an elastoviscoplastic medium.

medium is deformed in the shear elasticity mode (element G0). When the shear stress exceeds the threshold value,
the St. Venant element is opened, and a shear flow starts developing in the medium. With allowance for this
circumstance, we choose a rheological analog of the examined medium to be an elastoviscoplastic medium (EVPM)
corresponding to the mechanical model in Fig. 5b, where G0 is the shear elasticity modulus of the fluid, η∗ is the
effective EVPM viscosity at the time when the stress reaches the yield point of the medium, and µ0 is the shear
viscosity of the fluid in the viscous (Newtonian) flow mode. The strain of the mechanical model ε can be presented
as the sum of the strains of the mechanical units G0, η∗ | µ0: ε = ε′ + ε′′. Substituting the expressions relating the
stresses σ applied to the model and the strains of the units

ε′ =
σ

2G0
, ε′′ =

σ

2(µ0 + η∗)d/dt

into the last equation, we obtain

(µ0 + η∗)σ̇ + G0σ = 2G0(µ0 + η∗)ε

or, in the three-dimensional case, passing to the stress tensor T and strain-rate tensor D,

(µ0 + η∗)T⊕ + G0T = 2G0(µ0 + η∗)D. (1)

Here T⊕ is one of the convective derivatives of the stress tensor with respect to time, which transforms to a
substantial derivative in the one-dimensional case. Multiplying Eq. (1) by T and taking into account that the
relations η∗ � µ0 and T · T⊕ = 0 are valid on exceeding the yield point θ, we obtain

η∗ = 2θ2/(2D · T ) (2)

(2θ2 = T · T when the yield point is reached). Finally, substituting Eq. (2) into Eq. (1) and performing some
transformations, we obtain the rheological equation of state for the EVPM

T +
1

G0

(
µ0 +

θ2

D · T

)
T⊕ = 2

(
µ0 +

θ2

D · T

)
D (3)

or

T + λ0∗T
⊕ = 2µzD,

where µ = µ0 + θ2/(D · T ) is the structural viscosity of the medium, decreasing to µ0 with increasing shear stress
and strain rate, and λ0∗ = µ/G0.

2.2. For convenience of analysis, we multiply Eq. (3) by D · Tθ−2 and rewrite it in the form

T

µ0

µ0D · T
θ2

+
1

G0

(µ0D · T
θ2

+ 1
)
T⊕ = 2

(µ0D · T
θ2

+ 1
)
D. (4)

If a very weak stress is applied to the medium, and deformation of the medium proceeds very slowly, so that
D · Tµ0θ

−2 � 1 and T/µ0 � T⊕/G0, then Eq. (4) reduces to the form T⊕ = 2G0D. It follows from here that pure
shear deformation of the medium under very slow and weak loading obeys Hooke’s law τ = 2G0ετ . This conclusion
is in agreement with the experimentally observed behavior of water and glycerin [9]. If the shear-stress intensity
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increases to a level at which the condition µ0D · Tθ−2 > 1 is satisfied, the rheological characteristic of the medium
is described by Eq. (3); because of breakdown of the ordered structure of the medium, this equation reduces to the
classical Maxwell equation for θ2(µ0D · T )−1 � 1 and, hence, as µ → µ0:

T + λ0T
⊕ = 2µ0D, λ0 = µ0/G0. (5)

The behavior of the solution of this equation, as is known from [14], depends on the choice of the convective
derivative of the stress tensor with respect to time, whose generic form is T⊕ = T� + a(T · D + D · T ), where
T� = dT/dt + T ·W + (T ·W )t is the Jaumann rotational derivative, a 6= 0 is a constant, D = 0.5(∇V +∇V t),
and W = 0.5(∇V −∇V t). Substituting the value of T⊕ into Eq. (5), we obtain

T + λ0T
� + λ0a(T ·D + D · T ) = 2µ0D. (6)

2.3. We analyze the elastoviscous characteristics of the examined fluid by the example of a standard linear
Couette flow. In the Cartesian coordinate system xi, this flow has the form v1 = ε̇τx2, v2 = v3 = 0, where v1, v2,
and v3 are the components of the velocity vector V . Then, we obtain

T =

∣∣∣∣∣∣
σ11 τ12 τ13

τ21 σ22 τ23

τ31 τ32 σ33

∣∣∣∣∣∣ , D =

∣∣∣∣∣∣
0 ε̇/2 0

ε̇/2 0 0
0 0 0

∣∣∣∣∣∣ , W =

∣∣∣∣∣∣
0 ε̇/2 0

−ε̇/2 0 0
0 0 0

∣∣∣∣∣∣ .

Taking into account that T� = T ·W + (T ·W )t for a simple steady shear flow and writing Eq. (6) in the matrix
form with its subsequent expansion in terms of the i and j components, we obtain a system of algebraic equations
that yields

τ12 =
µ0ε̇τ

1 + ε̇2
τλ2

0(1− a2)
=

µ0ε̇τ

1 + (1− a2) De2

and, correspondingly,

µ∗ =
τ12

ε̇τ
=

µ0

1 + (1− a2) De2 ; (7)

k1(ε̇τ ) = σ11 − σ22 =
2µ0ε̇

2
τλ0

1 + ε̇2
τλ2

0(1− a2)
=

2µ0ε̇τ De
1 + (1− a2)De2 ; (8)

k2(ε̇τ ) = σ22 − σ33 = − µ0λ0ε̇
2
τ (1 + a)

1 + λ2
0ε̇

2
τ (1− a2)

= − (1 + a)µ0ε̇τ De
1 + (1− a2) De2 . (9)

Here, De = λ0ε̇τ = λ0/t∗ is the Debora number, which is a criterion of similarity of deformation of elastoviscous
media and t∗ = ε̇−1

τ is the characteristic time of these processes. Since the effective viscosity µ∗ = τ12ε̇−1
τ should

always remain positive, the parameter a in accordance with Eq. (7) is bounded by the condition −1 6 a 6 1.
As the case of the lower convective derivative a = 1 does not correspond to real processes [14], the most suitable
values of the parameter a corresponding to elastoviscous fluids lie within the range from 0 to −1. Hence, in the
case of already broken structural viscosity (i.e., after reaching the regime with µ0D · T � θ2), when the medium
behavior is described by the Maxwell model, we have k1 ≈ 0 and k2 ≈ 0 for low Debora numbers, in accordance
with Eqs. (7)–(9). In this case, the medium behaves as a Newtonian fluid without elastic features. After that, the
difference in normal stresses k1 and k2 starts increasing with increasing De, which indicates that glycerin again
acquires elastic properties, i.e., k1 ' 2µ0[λ0(1− a2)]−1 and k2 ' −µ0[λ0(1− a)]−1 for (1− a2) De � 1. Thus, if the
condition for formation of a zone in the form of a narrow band with a “sharp” maximum of the shear strain rate in
this band is ensured, as in the experiment described above, Eq. (3) for this zone acquires the form of Eq. (6) if the
condition D ·T � θ2 is satisfied. Solving this equation for the case of simple shear (7)–(9) shows that the difference
k2 − k1 increases with increasing ε̇τ , i.e., tensile stresses can be formed in this zone. Note, since De = λ0ε̇, water
(whose shear-stress relaxation time is λ0 < 10−6 sec) can manifest elastic properties after breakdown of structural
viscosity only if the shear strain rate is very high, which is next to impossible to reach in practice.

Finally, let us compare the experimental data with the estimate obtained by the rheological equation (3).
According to the experiment, a layer with a drastic decrease in structural viscosity of glycerin µz is formed at
ε̇τ = 2 sec−1. Through a special orifice in the bottom of glass 1 (see Fig. 2a), glycerin with the broken structure
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was fed to a capillary viscosimeter, which revealed that µz = 0.72 Pa · sec in this layer, and a further increase in ε̇τ

leads to a decrease in structural viscosity, which tends to the value µ0 = 0.48 Pa · sec. After that, the experimental
setup was adjusted to the operation mode of a standard rotational viscosimeter with a drive to the inner cylinder 2;
at T = +28.3◦C, when the glycerin viscosity reached µ = 72 Pa · sec, the viscosimeter displayed the shear stress
τ = 2.365 Pa. Substituting the experimental data ε̇τ = 2 sec−1 and µ0 = 0.48 Pa · sec into Eq. (3), which reduces to
the form τ−2θ2/τ = 2µ0ε̇τ in the case of a pure shear flow with a constant strain history (θ = 1 Pa for glycerin [9]),
we obtained the sought shear stress τ = 2.669 Pa. The experimental value of τ is 11.3 % lower than the predicted
value because the viscosity was measured in the experiments in a medium with a nonequilibrium structure (slowly
reconstructing during the measurement); another reason is the error in determining θ in [9].

Conclusions. The experiments showed that a tangential discontinuity in viscosity can be formed in glycerin.
When the shear load is removed, the discontinuity zone is “healed” with time: the initial structure is reconstructed,
and this process has a cellular character.

An elastoviscoplastic body can be considered as a macrorheological model of glycerin and water under weak
shear strains. The equation of state of the model body (3) in different modifications describes different modes of
medium deformation, including formation of zones with low shear viscosity in the medium.

Thus, the EVPM model is valid not only for solid-plastic materials and liquid-plastic media (bitumens, paints,
pastes, gels, polymer melts, etc.) but also for polar fluids (water and glycerin), which possess shear elasticity in the
range of ultraweak shear loads. In most real processes, however, the loads are above 1 Pa, i.e., they are much higher
than the yield point of these media and destroy the ordered structure so that the structural viscosity decreases
to the level of Newtonian viscosity. Therefore, polar fluids are commonly called Newtonian fluids. Nevertheless,
shear strength of these media should be taken into account in studying sedimentation of suspensions, slow diffusion
processes, biophysical processes in a bioplast, and in other cases where Newtonian fluids are subjected to very weak
shear loads.
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